Exploring the mechanism of action of the sperm-triggered calcium-wave pacemaker in ascidian zygotes.
نویسندگان
چکیده
In ascidians, as in mammals, sperm trigger repetitive Ca2+-waves that originate from cortical pacemakers situated in the vegetal hemisphere of the zygotes. In ascidians, a vegetal protrusion termed the contraction pole (CP) acts as the Ca2+-wave pacemaker, but the mechanism that underlies the generation of a Ca2+-wave pacemaker is not known. Here, we tested four hypotheses to determine which factors at the CP are involved in setting the pace of the ascidian Ca2+-wave pacemaker: (1) localized Ca2+ influx; (2) accumulation of phosphatidylinositol (4,5)bisphosphate [PtdIns(4,5)P2]; (3) accumulation of cortical endoplasmic reticulum (cER); and (4) enrichment of the sperm activating factor. We developed a method of dynamically monitoring the location of the CP during fertilization using a plekstrin homology (PH) domain from phospholipase Cdelta1 coupled to green fluorescent protein (GFP) that binds PtdIns(4,5)P2. We found that eggs in Ca2+-free sea water displayed Ca2+ waves that originated from the CP, showing that enhanced CP Ca2+ influx does not determine the origin of the pacemaker. Also, disruption of the PH::GFP-labelled CP once it had formed did not dislodge the Ca2+-wave pacemaker from that site. Next, when we prevented the accumulation of cER at the CP, all of the Ca2+ waves came from the site of sperm-egg fusion and the frequency of Ca2+ oscillations was unaltered. These data show that local Ca2+ influx, the accumulation of PtdIns(4,5)P2 and cER at the CP are not required for Ca2+-wave pacemaker function and instead suggest that a factor associated with the sperm determines the site of the Ca2+-wave pacemaker. Finally, when we injected ascidian sperm extract into the centre of unfertilized ascidian eggs that had been treated with microfilament- and microtubule-disrupting drugs, all the Ca2+ waves still originated from near the plasma membrane, showing that the sperm factor does not require an intact cortex if it is enriched near the plasma membrane (PM). We suggest that the Ca2+-releasing sperm factor might be tethered near or on the PM and that following the cortical contraction, it is translocated to the vegetal CP, thus making that site act as a Ca2+-wave pacemaker.
منابع مشابه
Calcium wave pacemakers in eggs.
During the past 25 years, the characterization of sperm-triggered calcium signals in eggs has progressed from the discovery of a single calcium increase at fertilization in the medaka fish to the observation of repetitive calcium waves initiated by multiple meiotic calcium wave pacemakers in the ascidian. In eggs of all animal species, sperm-triggered inositol (1,4,5)-trisphosphate [Ins(1,4,5)P...
متن کاملA novel mechanism controls the Ca2+ oscillations triggered by activation of ascidian eggs and has an absolute requirement for Cdk1 activity.
Fertilisation in ascidians triggers a series of periodic rises in cytosolic Ca(2+) that are essential for release from metaphase I arrest and progression through meiosis II. These sperm-triggered Ca(2+) oscillations are switched off at exit from meiosis II. Ascidian zygotes provided the first demonstration of the positive feedback loop whereby elevated Cdk1 activity maintained these Ca(2+) osci...
متن کاملFunction and characteristics of repetitive calcium waves associated with meiosis
BACKGROUND Internal calcium waves and oscillations are now recognized as universal features of cellular activation, but their exact role remains uncertain. In mammalian and ascidian eggs, a large, sperm-triggered calcium activation wave crosses the egg at fertilization, followed by a series of periodic increases in intracellular calcium concentration ([Ca2+]i). We have previously shown that, in...
متن کاملThe activation wave of calcium in the ascidian egg and its role in ooplasmic segregation
We have studied egg activation and ooplasmic segregation in the ascidian Phallusia mammillata using an imaging system that let us simultaneously monitor egg morphology and calcium-dependent aequorin luminescence. After insemination, a wave of highly elevated free calcium crosses the egg with a peak velocity of 8-9 microns/s. A similar wave is seen in egg fertilized in the absence of external ca...
متن کاملSimulation of calcium waves in ascidian eggs: insights into the origin of the pacemaker sites and the possible nature of the sperm factor.
Fertilization triggers repetitive waves of cytosolic Ca(2+) in the egg of many species. The mechanism involved in the generation of Ca(2+) waves has been studied in much detail in mature ascidian eggs, by raising artificially the level of inositol 1,4,5-trisphosphate [Ins(1,4,5)P(3)] or of its poorly metabolizable analogue, glycero-myo-phosphatidylinositol 4,5-bisphosphate [gPtdIns(4,5)P(2)]. H...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Journal of cell science
دوره 116 Pt 24 شماره
صفحات -
تاریخ انتشار 2003